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Landscape metrics have been widely used to characterize geographical patterns which
are important for many geographical and ecological analyses. Cellular automata
(CA) are attractive for simulating settlement development, landscape evolution, urban
dynamics, and land-use changes. Although various methods have been developed to
calibrate CA, landscape metrics have not been explicitly used to ensure the simulated
pattern best fitted to the actual one. This article presents a pattern-calibrated method
which is based on a number of landscape metrics for implementing CA by using
genetic algorithms (GAs). A Pattern-calibrated GA–CA is proposed by incorporating
percentage of landscape (PLAND), patch metric (LPI), and landscape division (D) into
the fitness function of GA. The sensitivity analysis can allow the users to explore
various combinations of weights and examine their effects. The comparison between
Logistic-CA, Cell-calibrated GA–CA, and Pattern-calibrated GA–CA indicates that the
last method can yield the best results for calibrating CA, according to both the training
and validation data. For example, Logistic-CA has the average simulation error of
27.7%, but Pattern-calibrated GA–CA (the proposed method) can reduce this error to
only 7.2% by using the training data set in 2003. The validation is further carried out
by using new validation data in 2008 and additional landscape metrics (e.g., Landscape
shape index, edge density, and aggregation index) which have not been incorporated
for calibrating CA models. The comparison shows that this pattern-calibrated CA has
better performance than the other two conventional models.

Keywords: genetic algorithms; landscape metrics; cellular automata; calibration;
land use

1. Introduction

In the twentieth century, rapid urbanization and urban expansion have become typical
geographical phenomena around the world because of economic development and
population growth. The urban population increased from 220 million in 1900 to 732 million
in 1950 (29% of the world’s population), and to 3.3 billion (the first time in history over
half of the world’s population) in 2007 (Potsiou 2010). The growth trend continues into the
twenty-first century as 60% of the world’s population will be urbanized by 2030 according
to the report. This rush to the cities has resulted in unprecedented urban expansion
and land-use changes in many fast-growing regions associated with severe ecological,
economic, and social problems.

*Corresponding author. Email: lixia@mail.sysu.edu.cn; lixia@graduate.hku.hk

© 2013 Taylor & Francis
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Global environmental challenges have attracted researchers to develop advanced
computer-based modeling and analysis tools to study the complex global and regional
problems (Parker et al. 2003). Land-use change models have been developed as a useful
tool to tackle these land-use problems. Simulation and prediction of urban and land-use
changes can provide a new approach to support the planning and management in these
fast-growing regions. This can help to facilitate sustainable development and smart growth,
and improve our knowledge on the process of urbanization and its driving forces (Herold
et al. 2003). Modeling urban development and land-use changes allows decision makers to
have improved ability to assess and compare future growth and to create planning scenarios
under different urban planning and management policies (Klosterman 1999, Li and Yeh
2000).

It is well recognized that bottom-up simulation models can have better performances
on modeling the dynamics of many geographical systems than top-down equation-based
models (Batty and Xie 1994, Clarke et al. 1994, Parker et al. 2003, Li 2011).
A major drawback of equation-based models is that they have difficulties in tackling a
series of complex behaviors associated with natural systems. For example, diffusion of
disease, wildfire spread, ecological evolution, transport and residential development, urban
dynamics, and land-use changes are usually very complex and often include nonlinear and
emergent behaviors, stochastic components, and feedback loops over spatial and temporal
scales (Li 2011).

As one common type of simulation methods, cellular automata (CA) have been
popularly used for modeling complex geographical and ecological processes, such as
rangeland dynamics (Li and Reynolds 1997), the fluctuation of animal population
(Couclelis 1988), settlement changes (Deadman et al. 1993), evolution of cities (Batty
and Xie 1994), wildfire diffusion (Clarke et al. 1994), land-use conversion (White et al.
1997, Li and Yeh 2002), forest succession or vegetation dynamics (Alonso and Sole 2000,
Favier and Dubois 2004), and other ecological changes (Wang and Zhang 2001). Another
type of simulation methods, agent-based models (ABMs), have also been considered more
fashionable than CA because of their flexibility in addressing behaviors of individuals.
However, the implementation of ABM requires sophisticated techniques, such as sample
surveys, participant observation, and model configuration and calibration (Li 2011). CA
are still an important and convenient tool in the simulation of urban dynamics and land-use
changes for large areas (e.g., at provincial and national scales).

CA should be calibrated if they are used to simulate various geographical phenomena
(Li and Yeh 2002, Silva and Clarke 2002, Straatman et al. 2004). Torrens and O’Sullivan
(2001) argue for the development of stronger calibration techniques for CA because
these models are usually calibrated by manual tuning of transition rules (Straatman
et al. 2004). It was reported that fine tuning of CA would take much longer time in
detailed applications by using a manual method (White 1995). Moreover, many calibration
methods are developed according to the cell-by-cell basis. The calibration becomes rather
complicated if CA are calibrated according to aggregated landscape metrics. The dilemma
is that the simulation results are expected to be known prior to calculating these metrics
which are required for calibrating these models.

Actually, landscape metrics have been widely used to represent urban land-use
structures and land-cover changes for validating simulation models (Herold et al. 2002).
It is considered that spatial metrics for urban and regional models can capture the
structures and patterns in an urban landscape (Parker et al. 2001, 2003). Studies have
indicated that spatial metrics are important for a variety of urban models because these
metrics can help link the economic processes with the associated patterns of land use
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596 X. Li et al.

(Herold et al. 2005). For example, the pattern outcomes in an ABM of edge–effect
externalities can be measured by a series of landscape metrics, such as landscape
composition, diversity, dominance, edge distance, edge density, shape, nearest-neighbor
distance, patch number, patch size and its standard deviation, patch density, and contagion
(Parker and Meretsky 2004). Recently, development patterns have also been linked to other
ecological and environmental processes, such as ecological protection (Li et al. 2011) and
energy consumption (Chen et al. 2011).

Most of these CA models just use landscape metrics to validate their simulation results
instead of calibrating them. For example, landscape metrics are used to examine whether
the simulated patterns can be fitted to the observed ones (Sui and Zeng 2001). There are
very limited studies on explicitly incorporating these metrics into the calibration procedure.
Attempts have been made to search for the optimized parameters of CA by using the
brute-force method (Silva and Clarke 2002) and a trial-and-error procedure (Soares-Filho
et al. 2002). The brute-force method was used to find the parameters of SLEUTH model
of CA (Silva and Clarke 2002). In their experiments, the model code tried many of the
combinations and permutations of the control parameters and performed multiple runs
from the seed year to the present (last) data set. In each run, the calibration computed
13 different measures of the goodness of fit between the simulated pattern and the actual
one. Filho et al. (2002) also proposed a trial-and-error method to calibrate CA according
to a set of landscape structure measures, such as fractal dimension, contagion index, and
the number of patches for each type of land-use and land-cover class. In the calibration,
several simulation series were run by adopting the empirical transition rates and varying the
mixture of the transitional functions. These methods may be very computation intensive.
For example, the brute-force calibration of SLEUTH needs to yield 13 metrics of goodness
of fit of the simulated pattern for the multiple runs of calibration (Onsted and Clarke
2011). In their two experiments, the calibration took 39.8 days and 70 days to complete
by using the computers of an Intel Dual Core PC with two CPUs at 2.13 GHz and a
Dell Precision 690 PC with a CPU at 2.33 GHz, respectively. It is attractive if CA can
be calibrated by using more intelligent and efficient methods rather than the brute-force or
the trial-and-error methods.

The calibration is to determine the parameters of CA based on training data. Land-use
dynamics is a function of social, economic, and physical factors, which are referred to as
driving forces. The contribution of each factor to land-use conversion is usually quantified
by a weight in the modeling. This is the main reason that logistic regression is commonly
used to derive the optimal weight of each factor. The regression will allow the predictions
fitted to the known results statistically (Verburg et al. 2004).

Besides logistic regression, genetic algorithms (GAs) can be used to find the optimized
parameters of CA (Li et al. 2008). GAs are an evolutionary approach consisting of two
main operators: crossover and mutation. These operators are crucial for improving the
fitness of a population (individuals or solutions) so that the initial guesses can be improved
toward convergence at the global optimum (Tseng et al. 2008). GAs have been used to
solve a variety of geographical optimization problems, such as site selection (Openshaw
and Openshaw 1997, Li and Yeh 2005), land-use planning (Stewart et al. 2004), spatial
geometry optimization (Brookes 2001), and multi-objective spatial search (Xiao et al.
2002). Recently, initial attempts have been made by using GA to calibrate CA (Li et al.
2008). However, this method has not used landscape metrics in the calibration so that the
simulated pattern can be best fitted to the actual one. We argue that CA can be calibrated
based on various landscape metrics during the multiple runs (trial solutions) from the seed
year to the present (last) data set.
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This article will demonstrate the necessity of developing pattern-calibrated CA if the
objective is to simulate natural phenomena, such as land-use dynamics. The methodology
is developed based on a common type of urban simulation models, logistic-CA. Although
logistic regression can be used to calibrate CA, the calibration relies on cell-by-cell samples
instead of aggregated landscape metrics. In this study, we will solve the pattern-based
(landscape metric-based) calibration problem by using GAs. In the calibration, a spe-
cial fitness function is designed to include three important landscape metrics, as well as
the per-pixel accuracy during the multiple runs (trial solutions) of GA. We will compare
this proposed method with the conventional methods in terms of simulation performances.
Validation is carried out by using an additional classified remote-sensing image and new
landscape metrics which have not been included for building the calibrated model.

2. Methodology

We will first discuss the method of logistic regression for CA calibration. However,
logistic regression which is just based on per-cell samples (labeled land-use data) cannot
incorporate aggregated landscape metrics into the regression. Actually, logistic-CA adopts
a single run of calibration by using logistic regression. Therefore, we then use another
method, GAs, to obtain the optimized parameters of CA (Li et al. 2008). In this study,
we further present a pattern-calibrated CA by applying GA to logistic-CA. This proposed
method can incorporate a number of landscape metrics during the multiple runs (trial
solutions) of GA. Although the basic CA is logistic-CA, this method is applicable to
other CA models. Replacing logistic-CA with other CA models is simple under the
GA framework. The GA program is independent of CA because CA only provide the
simulation results as the inputs to the fitness function of GA. The details of these three
methods are described in the following sections.

2.1. Classical cell-calibrated logistic-CA

In logistic-CA, logistic regression is used to obtain the relative weights of driving forces
or explanatory variables. These variables at a site are often estimated according to the
accessibility to built and natural amenity features, and the neighborhood and site conditions
(Conway and Wellen 2011). The accessibility in terms of proximity (attraction) factors
can be regarded as the proxies of very driving forces for influencing land-use changes
(Wu 2002, Li et al. 2008, 2011). For example, land development probability is related to
the proximities to urban centers, facilities, and transportation (Wu 2002). Since land-use
conversion is in a binary form (converted or not), it is straightforward to estimate the
conversion probability by using a logistic form:

pt
ij
(S = Converted) =

exp
(

zt
ij

)

1 + exp
(

zt
ij

) = 1

1 + exp
(
−zt

ij

) (1)

where pt
ij
is the conversion probability at time t for cell ij; S is the state (e.g., converted or

not), zt
ij
= a0 + a1x1 + a2x2 + · · · + amxm + · · · + aM xM ; a0 is the constant; xm is a spatial

variable (e.g., distance to town centers or roads); and am is the parameter (weight) of this
variable.
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598 X. Li et al.

Equation (1) can be further revised to include the neighborhood function and site condi-
tions (constraints). By considering all these factors, the logistic-CA is formalized by using
the following equation (Li et al. 2008):

pt
ij
(S = Converted) = (1 + (− ln γ )α)

1

1 + exp(−zt
ij
)

× f (Ω t
ij) × con(st

ij) (2)

where γ is a stochastic factor ranging from 0 to 1, α is a parameter to control the stochastic
degree, f (Ω t

ij) is the development intensity in the neighborhood of Ωij, and con(st
ij) is

the constraint score ranging from 0 to 1. The constraint score can be set according to
experiences and site conditions. For example, this score should be assigned as 0 for water
and steep hilly areas because land development is impossible in these strictly constrained
areas.

At each iteration of simulation, pt
ij

is compared with a threshold value to determine
whether a non-urbanized cell will be converted into an urbanized cell:

St+1
ij =

{
Converted, pt

ij
≥ pthreshold

NonConverted, pt
ij
< pthreshold

(3)

where pthreshold is a threshold value.
The threshold (T) is determined by using observation data or an exogenous growth

model which can predict land demand. For example, this value can be estimated in such
a way that the total number of converted cells will be equal to the actual one, which is
calculated or projected from the observed remote-sensing data (Li and Yeh 2002).

2.2. Cell-calibrated GA–CA

GAs can be used to calibrate CA according to a cell-by-cell approach (Li et al. 2008).
GAs were originally developed based on the concepts from Darwin’s theory of ‘natural
selection’ and ‘survival of the fittest’ (Holland 1975, Goldberg 1989). In the computation,
the process of ‘natural selection’ is determined by the fitness of individuals to their
environment. The fitness function which is crucial for the evolutionary process is defined
exogenously according to the problem domain. For example, the fitness function can be
estimated according to the cell-by-cell accuracy (overall accuracy).

In this method, all the parameters of the logistic-CA in Equation (1) are encoded as the
chromosome (CM):

CM = [a0, a1, a2 , . . . , xm, . . . , xM , pthreshold] (4)

The chromosome is to represent the parameters associated with these drivers. At each
generation of the evolutionary, a trial set of parameters can be regarded as an individual
of GA. The performance of an individual is assessed according to its fitness to the
actual pattern. A fitness function which is domain dependent is defined to indicate the
performance of an individual or chromosome (e.g., a set of parameters for CA) for solving
the optimal problem. In this study, the fitness function represents the difference between
the actual state (e.g., actual land use) and the predicted state which is obtained from the
logistic regression. The optimal set of parameters should produce the minimum value (the
least error) of the fitness function. Therefore, the fitness function is calculated according
to the following equation:
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f (x) =
n∑

i=1

(ŷi − yi)
2 (5)

where yi is the actual land use at cell i and ŷi is the estimated land use at cell i, which is
estimated from the logistic model.

An individual (e.g., a trial set of parameters of CA) with a higher value of the fitness
function will be selected as a ‘parent’ to produce offspring with a larger probability
according to the natural selection mechanism. In this application, a larger value of the
fitness function means that the solution (a trial set of parameters) can produce the smaller
difference between the predicted land use and the actual one. This reproduction process
is based on two main operations: crossover and mutation. The first operator which plays
a crucial role in the evolution is performed by swapping a corresponding segment of a
genetic representation of the parents. The second operator chooses an individual randomly
and alters one randomly chosen aspect in its bit string representation. Mutation is also
important because crossover cannot introduce any new information into the population.
Mutation will incorporate some degree of perturbations into the evolution by avoiding the
rapid degradation of population. In each step of the optimization, crossover and mutation
will be applied to the last population to form a new population. As a result, this natural
selection mechanism will find the optimal set of parameters for the logistic-CA.

Like most of the calibration methods, this GA method does not use the pattern
information for the calibration. Actually, this calibration is not too much different from
the logistic calibration because both try to estimate the optimized parameters just from the
per-cell training data. This means that the aggregated simulated patterns are not recursively
used in the calibration. As a result, the final simulated pattern will not be best fitted to the
actual one in terms of landscape metrics.

2.3. Pattern-calibrated GA–CA

In this article, a pattern-calibrated CA is designed by explicitly incorporating landscape
metrics into the calibration (Figure 1). The crucial part of this proposed method is to
calculate a number of landscape metrics during the multiple runs (generations) of GA.
In each generation of GA, a trial set of parameters is obtained and the development pattern
is simulated by using this set of parameters. Then, the landscape metrics of the simulated
pattern will be calculated and used for calculating the utility function. This utility function
will affect the next generation of exploration of GA. Through this feedback process,
landscape metrics can be embedded in the calibration of CA.

The methodology is similar to that of cell-calibrated GA–CA except for two major
differences. First, cell-based calibration methods just use per-cell samples to estimate
the parameters based on GAs or logistic regression. These methods do not require
recursively running CA models to know the patterns during the calibration. The proposed
pattern-based calibration method has to run the simulation models many times to find
the best results. Second, the fitness function in the cell-calibrated CA of using GAs only
considers the cell-by-cell accuracy (the overall accuracy). Since it is impossible to simulate
the exact patterns like the actual ones, the use of pattern factors is important for producing
more accurate calibration. In this proposed method, the fitness function has incorporated
some landscape metrics as well as the overall accuracy directly from the trial simulations of
CA. In each run, landscape metrics are calculated and used to calculate the fitness function
(Figure 1).

D
ow

nl
oa

de
d 

by
 [

T
he

 S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y 

L
ib

ra
ry

 o
f 

G
ua

ng
do

ng
 P

ro
vi

nc
e]

 a
t 0

0:
47

 1
8 

A
ug

us
t 2

01
3 



600 X. Li et al.

Figure 1. The methodology of the pattern-calibrated CA based on GAs.

There are many landscape metrics for characterizing geographical patterns. The first
step of this proposed method is to select appropriate landscape metrics to represent
land-use patterns before the calibration. During the last three decades, various landscape
metrics have been proposed for geographical and ecological applications, including
dominance, diversity, contagion, and fractal dimension (O’Neill et al. 1988, McGarigal
and Marks 1995, Jaeger 2000, McGarigal et al. 2002). These metrics can quantify and
categorize complex landscapes into identifiable patterns for understanding the process of
landscape changes (Turner et al. 2001). However, it is unrealistic or unnecessary to use
all these metrics for a single application. The selection of these metrics may be related to
domain knowledge or expert preferences.

In this study, we only select three metrics for the calibration based on their importance
and the experiences of previous studies. The methodology should be the same if other met-
rics are used instead of these three metrics. These three selected metrics are as follows:
(1) percentage of landscape (PLAND); (2) patch metric (LPI); and (3) landscape divi-
sion (D). These metrics are often used in many other studies because of their importance
and usefulness (McGarigal et al. 2002, Batistella et al. 2003, Weng 2007). All these met-
rics are calculated at each run of GA so that a set of parameters can be obtained for a trial
CA simulation. If there is a need, it is possible to include other metrics into the calibration
by just changing the fitness function of GA. The modification is convenient because the
fitness function is defined outside the GA program.

The first metric is percentage of landscape (PLAND) which quantifies the proportional
abundance of each patch type in the landscape. PLAND is useful because it can reveal the
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most important information about landscape composition (Weng 2007). This indicator is
calculated as follows (McGarigal et al. 2002):

PLAND =
∑n

j=1 aij

A
× 100 (6)

where i = 1, . . . , m patch types (classes); j = 1, . . . , n patches; aij is the area (m2) of patch
ij, and A is the total landscape area (m2) (adapted from McGarigal and Marks (1995)).

The second metric is largest patch index (LPI) which provides a measure of the size of
the largest patch of a given type as a percentage of the total landscape area (Batistella et al.
2003). Therefore, it is a simple measure of dominance by using the following equation:

LPI =
a

max
j=1

(aij)

A
× 100 (7)

The third metric, landscape division (D), is a kind of fragmentation indicators. Landscape
fragmentation has been considered as a major reason for the loss of species during urban
development (Jaeger 2000). Landscape fragmentation creates barriers against the dispersal
of species and disrupts existing ecological connections. Jaeger (2000) defined this index as
the probability that two randomly chosen places in the landscape under investigation are
not situated in the same undissected area:

D =
⎡
⎣1 −

n∑
j=1

(aij

A

)2

⎤
⎦ (8)

In the calibration, the fitness function in Equation (5) should be revised to incorporate
landscape metrics as well as the overall accuracy which are calculated from each run of GA.
At each run, a trial set of parameters which are obtained from GA will be used to simulate
land dynamics. The assessment of the simulated pattern consists of two parts: (1) traditional
cell-by-cell accuracy (overall accuracy) and (2) a combined landscape metric. Since the
assessment involves multi-criteria, a well-accepted method is to combine them linearly by
using the multi-criteria evaluation method (Eastman 1995, Malczewski 2006). Therefore,
the proposed fitness function in Equation (5) is revised as follows:

f (x) = we × Aoverall + wl × Pland (9)

where Aoverall is the overall accuracy and Pland is the combined landscape metric from a trial
simulation; we and wl are the weights of the overall accuracy and the combined landscape
metric, respectively.

The combined landscape metric is a normalized linear combination of these three
indicators:

Pland = |PLAND − PLANDactual| /PLANDactual + |LPI − LPIactual| /LPIactual

+ |D − Dactual| /Dactual
(10)
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602 X. Li et al.

where PLAND, LPI , and D are obtained from a trial simulation at each run of GA;
PLANDactual, LPIactual, and Dactual are obtained from the classified (observed) remote-
sensing images for these metrics, respectively.

All these metrics are calculated as class based at each run of GA. It is unnecessary or
infeasible to implement them at patch level because each patch will grow and new patch
will appear. Therefore, landscape metrics should be measured at an aggregated level (class
level) for the calibration. The objective is to ensure the simulated pattern should be best
fitted to the actual one at an aggregated level. At each run of GA, a trial set of parameters
is obtained for CA simulation. Figure 2 shows the example that the simulated patterns of
CA can be generated from different generations of GA. Then, the overall accuracy and
the combined landscape metric are calculated from the simulated results. These metrics
are further used to calculate the fitness function for the evolutionary approach of GA.
By using this looping process, GA and CA can be fully integrated for producing the best
fitted pattern. The later run (e.g., generation 100) of GA will allow CA to generate a more
fitted pattern (Figure 2). This is quite different from the traditional GA–CA method in
which CA is not put within GA (Li et al. 2008).

3. Implementation and results

3.1. Study area and spatial data

The proposed method is tested in a fast urbanized region, Guangzhou, which is situated
in the Pearl River Delta, Guangdong, China. The metropolitan region of Guangzhou has
an area of 7434.4 km2. This region has been experiencing significant changes of its land-
use patterns because of rapid urban expansion and population growth (Chen et al. 2011).
Simulating urban development can provide useful information to assist urban and regional
planning in this region.

Time series of satellite Landsat Thematic Mapper (TM) images of Guangzhou (Scene
No. 122-44 in China Remote Sensing Ground Station reference system) were used to obtain
empirical information about land-use dynamics. Supervised classification was carried out
to obtain land-use classes on the TM images dated on 2000, 2003, and 2008, respectively
(Chen et al. 2011). These images were first radiometrically and geometrically corrected
before the classification. These corrected images were then classified by using a series of
techniques, such as object-based classification, manual editing, and intensive field label-
ing with GPS. The average classification accuracies for these images are about 83–85%
according to field checking (Chen et al. 2011).

Figure 2. Simulated patterns of CA generated by a run (generation) of GA.
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These classified images reveal the fast urban expansion and land-use changes in the
study area. The empirical information about land-use changes obtained from classified
remote-sensing images is often used to calibrate and validate CA (Li and Yeh 2002, Wu
2002). In this study, the CA model was calibrated by using the first two classified TM
images in 2000 and 2003 and was further validated by using a later classified image
in 2008.

A number of proximity variables which represent the attraction factors for land-use
conversion should be acquired to implement the CA model (White et al. 1997, Wu 2002,
Conway and Wellen 2011, Li et al. 2011). In this study, these proximity variables in
Equation (1) include the distance to the main center (xMainCenter), the distance to the dis-
trict centers (xDistrictCenter), the distance to the large town centers (xLTownCenter), the distance
to the small town centers (xSTownCenter), the distance to the railways (xRailways), the distance to
the subways (xSubways), the distance to the expressways (xExpressways), and the distance to the
roads (xRoads) (Wu and Webster 1998, Li et al. 2008). These eight variables were generated
by using common GIS functions (Figure 3).

3.2. Calibration and validation

The calibration was carried out for the three CA models described in Section 2. These
models are (1) the classical logistic-CA based on cell-by-cell calibration (Cell-calibrated
logistic-CA); (2) genetic algorithm CA based on cell-by-cell calibration (Cell-calibrated

Figure 3. Various proximity variables related to Guangzhou urban dynamics: (a) distance to the
main center, (b) distance to the district centers, (c) distance to the large town centers, (d) distance to
the small town centers, (e) distance to the railways, (f) distance to the subways, (g) distance to the
expressways, and (h) distance to the roads.
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GA–CA); and (3) genetic algorithm CA based on pattern calibration (Pattern-calibrated
GA–CA).

First, logistic regression was carried out to obtain the parameters of Cell-calibrated
logistic-CA. The regression is to determine these parameters (weights) statistically after
the dependent variable (land-use change) and the independent spatial variables (e.g., prox-
imity variables) have been provided. The calibration was automatically implemented by
using the GeoSOS free software which was developed by Li and his team (Li et al. 2011).
This software will randomly select 20% of samples from classified remote-sensing images
for the logistic regression. The combined variable (zt

ij
) of the logistic-CA described in

Equation (2) was finally specified as follows:

zt
ij
= 1.222 − 2.037xMainCenter + 1.035xDistrictCenter + 0.293xLTownCenter − 0.504xSTownCenter

− 2.541xRailways + 0.708xSubways − 1.387xExpressways − 3.543xRoads

(11)

where xMainCenter, xDistrictCenter, xLTownCenter, xSTownCenter, xRailways, xSubways, xExpressways, and
xRoads represent the distance to the main center, the distance to the district centers, the
distance to the large town centers, the distance to the small town centers, the distance to
the railways, the distance to the subways, the distance to the expressways, and the distance
to the roads, respectively.

Second, GAs were also used to estimate the parameters of logistic-CA. The weights in
the combined variable (zt

ij
) in Equation (2) are encoded as the chromosome (CM):

CM = [a0, aMainCenter, aDistrictCenter, aLTownCenter, aSTownCenter, aRailways, aSubways,
aExpressways, aRoads, T]

(12)

The chromosome is just used to represent the set of parameters for these drivers. The reason
to develop GA–CA is that the landscape metrics can be later incorporated for calibrating
CA. This method allows landscape metrics from the simulated patterns to be embedded
within the utility function of GA. Logistic regression does not have the pattern-based
calibration ability because such cell-based regression cannot use a looping procedure.

The implementation of GA needs to determine a number of parameters, such as the
population size and the crossover and mutation rates. These parameters are usually decided
according to users’ experiences and domain knowledge. Studies indicate that the popu-
lation size ranging from 20 to 200 can give a good result of the optimization for many
applications (Li and Yeh 2005). In most situations, the crossover is assigned with a high
probability, while the mutation with a very low probability. Like natural processes, the
reproduction is mainly influenced by the crossover. The mutation only introduces a very
small perturbation. In this study, the crossover rate was set to 0.90 and the mutation rate
was set to 0.01. The strategy of elitist selection was also adopted that at least one of the gen-
eration’s best solutions was copied without any changes to a new population. This allows
the best solution to survive to the succeeding generation.

Figure 4 shows that the GA method is able to find the optimized parameters with good
convergence. The fitness described in Equation (5) drops rapidly and reaches the conver-
gence during the evolutionary approach. The search for the optimized parameters will
stop when the decrease of the best fitness value is stabilized. Table 1 lists the optimized
parameters of cell-calibrated GA–CA by using this GA method.

Finally, the GA method was also used to obtain the parameters of Pattern-calibrated
GA–CA. The pattern calibration was based on the revised fitness function described in
Equations (9) and (10). Table 2 lists the optimized parameters of this proposed model.
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Figure 4. The relationships between the best fitness value, generation, and population size.

Table 1. The parameters of Cell-calibrated GA–CA.

Parameters a0 aMainCenter aDistrictCenter aLTownCenter aSTownCenter

4.917 0.930 3.210 3.228 2.012

Parameters aRailways aExpressways aSubways aRoads T

0.397 1.913 3.185 4.828 0.433

A simple comparison can find that the parameters of traditional Logistic CA, Cell-
calibrated GA–CA, and Pattern-calibrated GA–CA are quite different, although they share
the same logistic form.

The performance of these three CA models was assessed according to the goodness of
fit between the simulated pattern and the actual one which was obtained from the classi-
fied TM image in 2003. The best model should have the best goodness of fit in terms of
landscape metrics as well as the overall accuracy. Tables 3 and 4 show the comparison of
these three models. It is found that Logistic-CA and Cell-calibrated GA–CA have similar
simulation performances in terms of accuracies measured by these indicators. However, the
proposed model, Pattern-calibrated GA–CA, can significantly improve the simulation per-
formances. Its simulated pattern is closer to the actual one in terms of PLAND and LPI than
the other two methods. Compared with the actual pattern, for example, Logistic-CA (the
common method) has the average error of 27.7%, but Pattern-calibrated GA–CA (the pro-
posed method) can reduce this error to only 7.2%. The improvement is as high as 285.8%

Table 2. The parameters of Pattern-calibrated GA–CA.

Parameters a0 aMainCenter aDistrictCenter aLTownCenter aSTownCenter

1.324 1.296 0.524 −0.936 0.841

Parameters aRailways aExpressways aSubways aRoads T

−0.520 0.976 2.897 2.329 0.867
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Table 3. Calibration errors of the three models compared with the actual land use in 2003: landscape
metrics and overall accuracy.

Metrics Actual Logistic- CA
Cell-calibrated

GA–CA
Pattern-calibrated

GA–CA

PLAND 11.896 13.633 15.591 11.912
LPI 3.011 5.426 5.720 3.367
D 0.999 0.997 0.996 0.999
Overall accuracy 1.000 0.841 0.867 0.833

Table 4. Calibration errors of the three models compared with the actual land use in 2003:
differences compared with the actual land use.

Metrics
Logistic-CA

(%)
Cell-calibrated GA–CA

(%)
Pattern-calibrated GA–CA

(%)

PLAND 14.6 31.1 0.1
LPI 80.2 90.0 11.8
D 0.2 0.3 0.0
Overall accuracy 15.9 13.3 16.8
Average error 27.7 33.6 7.2

by using the proposed method. This is because the traditional method has not taken land-
scape metrics into consideration during the calibration. The effects of the improvement
can be easily identified by visually comparing the simulation results with the actual one
(Figures 5 and 6). In the zoom-in selected areas (Figure 6), for example, Pattern-calibrated
GA–CA can produce much better simulated patterns within the yellow circles than the other
two models.

Figure 5. Simulation of urban growth for Guangzhou in 2003 and 2008.
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Figure 6. Comparison of simulated patterns in 2003 between Logistic CA, Cell-calibrated GA–CA,
and Pattern-calibrated GA–CA.

The metrics in Tables 3 and 4 were obtained by using the training data in 2003. A fur-
ther comparison is necessary by using the validation data in 2008 which have not been used
for building these calibrated models. The comparison was carried out by assessing their
accuracies in predicting urban development in 2008. The results indicate that Logistic-CA
and Cell-calibrated GA–CA have similar simulation performances for these metrics.
However, Pattern-calibrated GA–CA yields a much better results than Logistic-CA and
Cell-calibrated GA–CA for the indicators of PLAND and LPI (Tables 5 and 6). Compared
with the actual pattern, Logistic-CA (the common method) has the average error of 31.57%
in terms of these four metrics, but Pattern-calibrated GA–CA (the proposed method) can
reduce this error to only 14.0%. The improvement is as high as 124.7%. The improvement
in predicting the development patterns in 2008 can be also identified by visually comparing
these simulation results in the zoom-in selected areas in Figure 6.

The fitness function in Equations (9) and (10) is crucial to the identification of opti-
mized parameters of CA. This function consists of two major components, traditional
cell-by-cell accuracy (overall accuracy) and a combined landscape metric. Two weights, we

and wl, are used to reflect the importance of each component in the optimization. Actually,
these weights can be decided according to users’ preferences or planning objectives. For

Table 5. Validation errors of the three models compared with the actual land use in 2008: landscape
metrics and overall accuracy.

Metrics Actual Logistic-CA
Cell-calibrated

GA–CA
Pattern-calibrated

GA–CA

PLAND 20.940 22.924 27.498 21.679
LPI 6.226 11.934 13.487 7.914
D 0.995 0.985 0.981 0.992
Overall accuracy 1.000 0.760 0.787 0.748
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Table 6. Validation errors of the three models compared with the actual land use in 2008:
differences compared with the actual land use.

Metrics
Logistic-CA

(%)
Cell-calibrated GA–CA

(%)
Pattern-calibrated

GA–CA (%)

PLAND 9.5 31.3 3.5
LPI 91.7 116.6 27.1
D 1.0 1.4 0.3
Overall accuracy 24.0 21.3 25.2
Average error 31.5 42.7 14.0

example, the weight of wl should be assigned with a larger value if the pattern factor is
more important than the overall accuracy in the calibration.

If these weights are unclear to users, sensitivity analysis can be carried out to assist the
determination of these weights. In the above experiments, the same weight (e.g., we = 0.5
and wl = 0.5) is given to these two components. However, these weights can be varied to
examine their effects on simulation. It is clear that the optimized parameters of CA are
affected by using different combinations of we and wl in the fitness function. The combina-
tion, we =1 and wl = 0, is equivalent to the setting of the traditional method which ignores
the component of landscape metrics. Such a combination may produce a quite different
pattern from the actual one in terms of landscape metrics. Table 7 shows the results of
the sensitivity analysis by using different combinations of we and wl. It is ideal that a
simulated pattern should have the best fit to the actual one. The proposed method may help
to achieve such a goal by considering all the options in an evolutionary approach.

In the above GA method, the pattern calibration only considers three important land-
scape metrics, percentage of landscape (PLAND), patch metric (LPI), and landscape
division (D). There is a question if such pattern-calibrated model can produce good per-
formances if other landscape metrics are used for the validation. Therefore, we further
introduce three new metrics which are not included in the calibration for a more robust
validation.

The first new metric is landscape shape index (LSI) which is a simple measure of class
aggregation or clumpiness of a pattern. This metric is given by the following equation
(McGarigal and Marks 1995):

LSI = ei

min ei

Table 7. Sensitivity analysis by using different combinations of we and wl.

Scenario

Metrics Actual
we = 1,
wl = 0

we = 0.75,
wl = 0.25

we = 0.5,
wl = 0.5

we = 0.25,
wl = 0.75

we = 0,
wl = 1

PLAND 11.896 15.591 12.995 11.912 11.918 11.908
LPI 3.011 5.720 4.368 3.367 3.248 3.238
D 0.999 0.996 0.998 0.999 0.999 0.999
Overall accuracy 1.000 0.867 0.846 0.833 0.824 0.823

D
ow

nl
oa

de
d 

by
 [

T
he

 S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y 

L
ib

ra
ry

 o
f 

G
ua

ng
do

ng
 P

ro
vi

nc
e]

 a
t 0

0:
47

 1
8 

A
ug

us
t 2

01
3 



International Journal of Geographical Information Science 609

where ei is the total length of edge (or perimeter) of class i in terms of number of cell sur-
faces (including all landscape boundary and background edge segments involving class i)
and min ei is the minimum total length of edge (or perimeter) of class i in terms of number
of cell surfaces.

The second new metric is edge density (ED) which reports the edge length on a per
unit area basis. This metric can facilitate comparison among landscapes of varying size.
This metric is defined as follows (McGarigal and Marks 1995):

ED =
∑m

k=1 eik

A
× 10, 000

where eik is the total length (m) of edge in landscape involving patch type (class) i (includ-
ing landscape boundary and background segments involving patch type i) and A is the total
landscape area (m2).

The last metric is aggregation index (AI) which is calculated from an adjacency matrix.
This metric shows the frequency with which different pairs of patch types appear side by
side on the map. The following equation is used to represent this metric (He et al. 2000):

AI =
[

gii

max gii

]
× 100

where gii is the number of like adjacencies (joins) between pixels of patch type (class) i
based on the single-count method, and max gii is the maximum number of like adjacencies
(joins) between pixels of patch type (class) i based on the single-count method.

The validation based on these three new metrics was carried out for the simulated
patterns in 2003 and 2008. The results are very plausible according to the comparison in
Tables 8 and 9. It is found that Pattern-calibrated GA–CA can produce the values of LSI ,
ED, and AI much closer to those of the actual patterns in 2003 and 2008 than the other two

Table 8. Validation of the three models based on new metrics: validation based on new landscape
metrics for 2003.

Cell-calibrated Pattern-calibrated
Metrics Actual Logistic-CA GA–CA GA–CA

LSI 76.003 63.249 59.240 69.340
ED 5.000 4.526 4.532 4.644
AI 60.937 70.245 73.990 64.999
Average error (%) 100 13.8 17.6 7.5

Table 9. Validation of the three models based on new metrics: validation based on new landscape
metrics for 2008.

Cell-calibrated Pattern-calibrated
Metrics Actual Logistic-CA GA–CA GA–CA

LSI 80.171 60.194 51.196 66.375
ED 7.168 5.450 5.204 5.587
AI 69.709 80.202 83.128 77.512
Average error (%) 100 15.1 19.3 11.2
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models. Compared with the actual pattern, for example, Logistic-CA, Cell-calibrated GA–
CA, and Pattern-calibrated GA–CA have the average error (in terms of these three metrics)
of 13.8%, 17.6%, and 7.5%, respectively, for 2003. These values become 15.1%, 19.3%,
and 11.2%, respectively, for 2008. It is obvious that the proposed method can still perform
significantly better than the other two traditional methods if the validation is based on new
metrics.

The proposed method needs much more time to complete than the other two methods
because the landscape metrics of trial simulations are calculated at each run of GA. In our
experiments, the calibration took about 40 hours to complete by using the computers of an
Intel Xeon PC with two CPUs at 2.40 GHz. However, the time is much faster than that of
the brute-force method. In the two experiments by Onsted and Clarke (2011), for example,
the brute-force calibration took 39.8 days and 70 days to complete by using the computers
of an Intel Dual Core PC with two CPUs at 2.13 GHz and a Dell Precision 690 PC with a
CPU at 2.33 GHz, respectively.

4. Conclusions

CA are quite popular and convenient for simulating urban development and land-use
changes in large areas. This article has demonstrated that the incorporation of landscape
metrics is important for a stronger calibration of CA. It is quite difficult to produce the best
fit between the simulated pattern and the actual one by using existing calibration methods.
A major problem with most of these methods is that landscape metrics are not included
in the calibration. Early work on the automatic calibration of CA may include the meth-
ods of logistic regression (Wu 2002) and neural networks (Li and Yeh 2002). Logistic
regression should be a useful and convenient tool for calibrating CA (Wu 2002, Li et al.
2008, Lin et al. 2011). In developing a logistic-CA, logistic regression is used to quantify
the relationships between land-use conversion and their drivers (spatial variables). In the
logistic regression, the parameters associated with each spatial variable are statistically
determined by using samples (cell-based data) (Pontius et al. 2008). However, this method
has difficulties in embedding aggregated landscape patterns explicitly into the regression
procedure.

Pattern-based calibration should have a great appeal for a variety of simulation mod-
els which are used to solve ecological and urban planning problems. Actually, landscape
metrics can be used to quantify the spatial heterogeneity of individual patches for reflect-
ing important spatial properties. These metrics provide important information that can
characterize urban and land-use systems. These metrics are initially developed for the mea-
surement of forest patches (Sudhira et al. 2004). They have become a useful quantitative
measure to describe structures and patterns of a landscape. These indicators have been
applied to the detection of landscape patterns, biodiversity, and habitat fragmentation; the
description of changes in landscapes; and the investigation of scale effects in describing
landscape structures (O’Neill et al. 1996, Herold et al. 2002).

Although the brute-force method and the trial-and-error method can be based on the
pattern factors, these methods are quite computation intensive. This study presents a new
method to incorporate a number of landscape metrics explicitly into GAs for calibrating
CA. Unlike traditional methods, this GA–CA method allows the calibration to be based on
the metrics calculated from CA simulation at each run of GA. Landscape metrics and over-
all accuracy are calculated each time from a trial simulation under this GA framework.
In this study, three important landscape indicators, percentage of landscape (PLAND),
patch metric (LPI), and landscape division (D), are selected for calculating the fitness
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function of GA. The optimization requires the looping procedure repeated many times to
find the optimized parameters of CA so that the simulated pattern can be best fitted to the
actual one.

The comparison indicates that the proposed method can yield quite plausible results of
simulation by using these metrics. For example, the proposed method (Pattern-calibrated
GA–CA) yields the average simulation error of 7.2%, while the other two traditional meth-
ods have the average simulation errors of 27.7% and 33.6%, respectively, for 2003. The
improvement is also significant by using the validation data in 2008, which have not been
used for building the calibrated models.

The calibration involves a number of factors (e.g., landscape metrics and overall accu-
racy) in the fitness function. The importance of each factor is determined by its weight. The
determination of these weights can be facilitated by the sensitivity analysis. This analysis
allows the users to examine the effects of using different combinations of weights for these
factors. Experiments were carried out by varying these weights instead of using the same
weight for each factor. Although the linear combination may have drawbacks, it is quite
practical and convenient for exploring different options in the search for the optimized
parameters of CA.

A more robust validation is to examine whether the proposed method can perform well
if the assessment is based on other new landscape metrics which are not included in the
calibration. In this study, these new metrics include landscape shape index (LSI), edge
density (ED), and aggregation index (AI). The comparison shows that Pattern-calibrated
GA–CA still yields the best performance in terms of LSI , ED, and AI for simulating both
the 2003 and 2008 patterns. This means that Pattern-calibrated GA–CA is effective in
producing the pattern which is closest to the actual one.

Although the proposed method can yield quite plausible simulation results, it is subject
to some assumptions and limitations. The underlying assumption behind the landscape-
based approach is that any changes will not abruptly change landscape behavior. This
means that the growth is based on historical trends. Although landscape metrics are
incorporated into the calibration, these metrics are used at an aggregated landscape level
instead of detailed patch level. Moreover, the utility function of GA is based on a linear
combination of all these landscape metrics.
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